Dynamics of an Interface Connecting a Stripe Pattern and a Uniform State: amended Newell-Whitehead-Segel equation

نویسندگان

  • René G. Rojas
  • Ricardo G. Elías
  • Marcel G. Clerc
چکیده

The dynamics of an interface connecting a stationary stripe pattern with a homogeneous state is studied. The conventional approach which describes this interface, Newell–Whitehead–Segel amplitude equation, does not account for the rich dynamics exhibited by these interfaces. By amending this amplitude equation with a nonresonate term, we can describe this interface and its dynamics in a unified manner. This model exhibits a rich and complex transversal dynamics at the interface, including front propagations, transversal patterns, locking phenomenon, and transversal localized structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

un 2 00 8 epl draft Transversal interface dynamics of a front connecting a stripe pat - tern to a uniform state

Interfaces in two-dimensional systems exhibit unexpected complex dynamical behaviors, the dynamics of a border connecting a stripe pattern and a uniform state is studied. Numerical simulations of a prototype isotropic model, the subcritical Swift-Hohenberg equation, show that this interface has transversal spatial periodic structures, zigzag dynamics and complex coarsening process. Close to a s...

متن کامل

A Comparison Between Fourier Transform Adomian Decomposition Method and Homotopy Perturbation ethod for Linear and Non-Linear Newell-Whitehead-Segel Equations

In this paper, a comparison among the hybrid of Fourier Transform and AdomianDecomposition Method (FTADM) and Homotopy Perturbation Method (HPM) is investigated.The linear and non-linear Newell-Whitehead-Segel (NWS) equations are solved and the results arecompared with the exact solution. The comparison reveals that for the same number of componentsof recursive sequences, the error of FTADM is ...

متن کامل

Systematic derivation of a rotationally covariant extension of the two-dimensional Newell-Whitehead-Segel equation.

An extension of the Newell-Whitehead-Segel amplitude equation covariant under abritrary rotations is derived systematically by the renormalization group method. Typeset using REVTEX 1 The present day theory of pattern formation to a large degree rests on the derivation and exploitation of amplitude equations. In particular, for the formation of 2-dimensional patterns by spontaneous symmetry bre...

متن کامل

The Newell-whitehead-segel Equation for Traveling Waves

An equation to describe nearly 1D traveling-waves patterns is put forward in the form of a dispersive generalization of the Newell-Whitehead-Segel equation. Transverse stability of plane waves is shown to be drastically altered by the dispersion. A necessary transverse Benjamin-Feir stability condition is obtained. If it is met, a quarter of the plane-wave existence band is unstable, while thre...

متن کامل

Periodic Nucleation Solutions of the Real Ginzburg-Landau equation in a Finite Box

In the vicinity of the threshold of a continuous pattern-forming instability a description of the basic periodic solution and its slow modulations is possible by perturbation theory [Newell & Whitehead, 1969; Segel, 1969; Stuart & Di Prima, 1978]. For quasi-one-dimensional, stationary, and periodic patterns formed from an unstructured state through a continuous soft-mode finite-q instability, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009